126 research outputs found

    Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment of Fruits and Vegetables

    Get PDF
    Over the past decade, hyperspectral imaging has been rapidly developing and widely used as an emerging scientific tool in nondestructive fruit and vegetable quality assessment. Hyperspectral imaging technique integrates both the imaging and spectroscopic techniques into one system, and it can acquire a set of monochromatic images at almost continuous hundreds of thousands of wavelengths. Many researches based on spatial image and/or spectral image processing and analysis have been published proposing the use of hyperspectral imaging technique in the field of quality assessment of fruits and vegetables. This chapter presents a detailed overview of the introduction, latest developments and applications of hyperspectral imaging in the nondestructive assessment of fruits and vegetables. Additionally, the principal components, basic theories, and corresponding processing and analytical methods are also reported in this chapter

    NuSTAR observations and broadband spectral energy distribution modeling of the millisecond pulsar binary PSR J1023+0038

    Get PDF
    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ~79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher that in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intra-binary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting the disappearance of the X-ray orbital modulation.Comment: 8 pages, 6 figures; accepted for publication in Ap

    In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology

    Get PDF
    Purpose: To investigate by in silico screening the anti-inflammatory constituents of Cinnamomum cassia twigs. Methods: Information on the constituents of C. cassia twigs was retrieved from the online Traditional Chinese Medicines (TCM) database and literature. Inflammation-related target proteins were identified from DrugBank, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genetic Association Database (GAD), and PharmGKB. The identified compounds were filtered by Lipinski’s rules with Discovery Studio software. The “Libdock” module was used to perform molecular docking; LibdockScores and default cutoff values for hydrogen bonds and van der Waals interactions were recorded. LibdockScores between the prototype ligand and target protein were set as the threshold; compounds with higher LibdockScores than threshold were regarded as active compounds. Cytoscape software was used to construct active constituent-target protein interaction networks. Results: Sixty-nine potential inflammatory constituents with good drug-like properties in C. cassia twigs were screened in silico based on molecular docking and network pharmacology analysis. JAK2, mPEGS-1, COX-2, IL-1β, and PPARγ were considered the five most important target proteins. Compounds such as methyl dihydromelilotoside, hierochin B, dihydromelilotoside, dehydrodiconiferyl alcohol, balanophonin, phenethyl (E)-3-[4-methoxyphenyl]-2-propenoate, quercetin, and luteolin each interacted with more than six of the selected target proteins. Conclusion: C. cassia twigs possess active compounds with good drug-like properties that can potentially be developed to treat inflammation with multi-components on multi-targets

    Effect of Glow Discharge Cold Plasma Treatment on Improvement of Wheat Processing Quality

    Get PDF
    In order to improve the processing quality of wheat, newly harvested wheat was treated with glow discharge cold plasma. The changes in the physicochemical properties of wheat flour and the rheological properties of wheat flour dough after the treatment were studied, and the molecular mass distribution and secondary structure of wheat flour proteins were furthermore analyzed. The results showed that the gluten index of wheat was significantly increased after cold plasma treatment with oxygen or argon as the gas source. Dough development time and stability time were improved, and the mixographic parameters midline integral at 8 min (MTxI) and midline width at 8 min (MTxW) were significantly increased (P < 0.05), while weakening slope (WS) was significantly decreased (P < 0.05). The content of macromolecular polymeric storage protein fraction F1 was increased, and the ratio between macromolecular polymeric storage protein fraction F1 and small-molecule polymeric storage protein fraction F2 was significantly increased (P < 0.05). The protein secondary structure was transformed from β-sheet and β-turn to more ordered intermolecular β-sheet. In conclusion, glow discharge cold plasma treatment changed the molecular mass distribution and secondary structure of wheat storage proteins, significantly enhanced the elasticity and mixing tolerance of dough, and improved the tensile resistance of dough, thereby enhancing the processing quality of wheat to some extent

    Modeling and simulation of extended ant colony labor division for benefit distribution of the all-for-one tourism supply chain with front and back decoupling

    Get PDF
    This paper takes the supply chain alliance under the decoupling of the front and back of the all-for-one tourism as the research object. Considering the three behavior stimuli of self-benefit, altruism, and invariance, this article resets the attributes such as environmental stimuli and response threshold of ants based on the characteristics of the all-for-one tourism supply chain with shared services as the core under the decoupling of the front and back. Moreover, it introduces dual intervention factors to coordinate the benefit distribution process of different member companies, takes fairness as the main goal of benefit distribution, introduces relative deprivation as the measure index of fairness, and establishes a dynamic all-for-one tourism supply chain alliance benefit distribution model. The experimental results show that the extended model has good flexibility of benefit distribution and realizes the fair distribution of supply chain benefits

    A rare early-onset neonatal case of Birk-Barel syndrome presenting severe obstructive sleep apnea: a case report

    Get PDF
    BackgroundBirk-Barel syndrome, also known as KCNK9 imprinting syndrome, is a rare fertility disorder. And the main clinical manifestations include congenital hypotonic, craniofacial malformation, developmental delay, and intellectual disability. Generally, such patients could be diagnosed beyond the infant period. Moreover, the delayed diagnosis might lead to a poor prognosis of rehabilitation therapy. However, neonatal obstructive sleep apnea (OSA) was seldom reported in Birk-Barel syndrome. Here, we reported a severe neonatal OSA case induced by Birk-Barel syndrome, resulting in an early diagnosis with improved outcomes by integrative management.Case presentationThe proband was a neonate presenting with recurrent severe OSA, with craniofacial deformity and congenital muscle hypotonia. Bronchoscopy examinations indicated a negative finding of pharyngeal and bronchus stenosis, while laryngomalacia had been observed. Whole exon sequencing demonstrated a c. 710C&gt;A heterozygous variant resulting in a change of amino acid (p.A237D). This variant resulted in a change of amino acid sequence, affected protein features and changed splice site leading to a structural deformation in KCNK9 protein. This p.A237D variant also affected the crystal structure on the p.G129 site. Additionally, we used the mSCM tool to measure the free energy changes between wild-type and mutant protein, which indicated highly destabilizing (−2.622 kcal/mol).ConclusionThis case report expands the understanding of Birk-Barel syndrome and indicates that OSA could serve as the on-set manifestation of Birk-Barel syndrome. This case emphasized genetic variants which were associated with severe neonatal OSA. Adequate WES assessment promotes early intervention and improves the prognosis of neurological disorders in young children

    Attenuating lipid metabolism in atherosclerosis: The potential role of Anti-oxidative effects on low-density lipoprotein of herbal medicines

    Get PDF
    Atherosclerosis (AS) is a multifactorial chronic disease with great harm to the health of human being, which is a basic pathogenesis of many cardiovascular diseases and ultimately threatens human life. Abnormal blood lipid level is one of the most common diagnostic indicators of AS in clinic, and lipid metabolism disorder is often observed in patients with AS. Cholesterol is an important lipid in the human body, which is of great significance for maintaining normal life activities. Generally, cholesterol is transported to peripheral tissues by low-density lipoprotein (LDL), and then transported to the liver by high-density lipoprotein (HDL) via its cholesterol reverse transport function, and finally discharged. Under oxidative stress condition, LDL is commonly oxidized to the form ox-LDL, which is ingested by macrophages in large quantities and further forms foam cells, disrupting the normal metabolic process of cholesterol. Importantly, the foam cells are involved in forming atherosclerotic plaques, whose rupture may lead to ischemic heart disease or stroke. Furthermore, ox-LDL could also promote the development of AS by damaging vascular endothelium, promoting the migration and proliferation of smooth muscle cells, and activating platelets. Therefore, inhibiting LDL oxidation may be an effective way to improve lipid metabolism and prevent AS. In recent years, increasing studies have shown that herbal medicines have great potentiality in inhibiting LDL oxidation and reducing ox-LDL induced foam cell formation. Accordingly, this paper summarized current research on the inhibitory effects of herbal medicines against LDL oxidation and foam cell formation, and made a brief description of the role of cholesterol and LDL in lipid metabolism disorder and AS pathogenesis. Importantly, it is suggested that herbal medicines could inhibit LDL oxidation and regulate cholesterol homeostasis via downregulation of CD36 and SR-A, whereas upregulation of ABCA1 and ABCG1

    Identification of ferroptosis-related genes in the progress of NASH

    Get PDF
    BackgroundNon-alcoholic steatohepatitis (NASH) is becoming more widespread, and some similarities exist between its etiology and ferroptosis. However, there are limited investigations on which ferroptosis-related genes (FRGs) are regulated in NASH and how to regulate them. We screened and validated the pivotal genes linked to ferroptosis in NASH to comprehend the function of ferroptosis in the development of NASH.MethodsTwo mRNA expression data were obtained from the Gene Expression Omnibus (GEO) as the training set and validation set respectively. FRGs were downloaded from FerrDb. The candidate genes were obtained from the intersection between differentially expressed genes (DEGs) and FRGs, and further analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The hub genes were identified by the protein-protein interaction (PPI) network and Cytoscape. Then, FRGs closely related to the severity of NASH were identified and further confirmed using the validation set and mouse models. Ultimately, based on these genes, a diagnostic model was established to differentiate NASH from normal tissues using another data set from GEO.ResultsA total of 327 FRGs in NASH were acquired and subjected to GSEA. And 42 candidate genes were attained by overlapping the 585 FRGs with 2823 DEGs, and enrichment analysis revealed that these genes were primarily engaged in the fatty acid metabolic, inflammatory response, and oxidative stress. A total of 10 hub genes (PTGS2、IL1B、IL6、NQO1、ZFP36、SIRT1、ATF3、CDKN1A、EGR1、NOX4) were then screened by PPI network. The association between the expression of 10 hub genes and the progress of NASH was subsequently evaluated by a training set and verified by a validation set and mouse models. CDKN1A was up-regulated along with the development of NASH while SIRT1 was negatively correlated with the course of the disease. And the diagnostic model based on CDKN1A and SIRT1 successfully distinguished NASH from normal samples.ConclusionIn summary, our findings provide a new approach for the diagnosis, prognosis, and treatment of NASH based on FRGs, while advancing our understanding of ferroptosis in NASH

    MindShift: Leveraging Large Language Models for Mental-States-Based Problematic Smartphone Use Intervention

    Full text link
    Problematic smartphone use negatively affects physical and mental health. Despite the wide range of prior research, existing persuasive techniques are not flexible enough to provide dynamic persuasion content based on users' physical contexts and mental states. We first conduct a Wizard-of-Oz study (N=12) and an interview study (N=10) to summarize the mental states behind problematic smartphone use: boredom, stress, and inertia. This informs our design of four persuasion strategies: understanding, comforting, evoking, and scaffolding habits. We leverage large language models (LLMs) to enable the automatic and dynamic generation of effective persuasion content. We develop MindShift, a novel LLM-powered problematic smartphone use intervention technique. MindShift takes users' in-the-moment physical contexts, mental states, app usage behaviors, users' goals & habits as input, and generates high-quality and flexible persuasive content with appropriate persuasion strategies. We conduct a 5-week field experiment (N=25) to compare MindShift with baseline techniques. The results show that MindShift significantly improves intervention acceptance rates by 17.8-22.5% and reduces smartphone use frequency by 12.1-14.4%. Moreover, users have a significant drop in smartphone addiction scale scores and a rise in self-efficacy. Our study sheds light on the potential of leveraging LLMs for context-aware persuasion in other behavior change domains
    corecore